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Background: size & concentration of eigenfunctions onS2

Lp(M) estimates and L2 concentration on geodesics
Improved bounds: Nonpositive curvature & dispersion

General setting
Riemannian manifold (M, g) and associated Laplacian ∆ = ∆g

Eigenfunctions: −∆geλ(x) = λ2eλ(x), shall normalize∫
M
|eλ|2 dVg = 1

Main issues:

• As λ→∞, how “big” can the eλ get?
• How concentrated can their mass become? And where?
• When is there “dispersion” of e.f.’s?

We’ll focus on the simplest case where M is a compact
manifold without boundary of dimension 2; however, many of
the results hold in greater generality.
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Background: size & concentration of eigenfunctions onS2

Lp(M) estimates and L2 concentration on geodesics
Improved bounds: Nonpositive curvature & dispersion

Round Sphere
Model (extreme) case: S2 with round metric

Eigenfunctions are restriction of harmonic polynomials to S2

Distinct eigenvalues are λk =
√
k2 + k repeating with

multiplicity dk = 2k + 1

Resulting eigenspace, “spherical harmonics of degree k”,

Hk = { ek,1, ek,2, . . . , ek,dk },

−∆S2 ek,j = (k2 + k)ek,j
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Background: size & concentration of eigenfunctions onS2

Lp(M) estimates and L2 concentration on geodesics
Improved bounds: Nonpositive curvature & dispersion

Concentration at points

Let Hk : L2(S2)→ Hk be the projection onto spherical
harmonics of degree k. Its kernel:

Hk(x, y) =

dk∑
j=1

ek,j(x)ek,j(y)

Pick x0 ∈ S2. Zonal function at x0:

Zk(y) =
(
Hk(x0, x0)

)−1/2
Hk(x0, y)

Easy to see
∫
|Zk(y)|2 = 1. and, moreover,

Zk(x0) =
(
Hk(x0, x0)

)−1/2
Hk(x0, x0) =

√
dk ≈ λ

1/2
k

Calculate: ‖Zk‖Lp(S2) ≈ λ
2(1/2−1/p)−1/2
k , p ≥ 6.
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Background: size & concentration of eigenfunctions onS2

Lp(M) estimates and L2 concentration on geodesics
Improved bounds: Nonpositive curvature & dispersion

Concentration on periodic geodesics

Highest weight spherical harmonics, {Qk}:
Restriction of k1/4(x1 + ix2)k to S2.

Satisfies
∫
|Qk|2 ≈ 1, and has L2-mass concentrated along

shrinking tubes around equator:
γ0 = {(x1, x2, x3) ∈ S2 : x2

1 + x2
2 = 1, x3 = 0}

Specifically, since

|x1 + ix2|k = (1− x2
3)k/2 = e

k
2

ln(1−x23) ≈ e−
k
2
x23

Conclude that if Tδ(γ) denotes δ-ngbhd of (unit) geodesic γ,

lim inf
k→∞

∫
T
λk
− 1

2
(γ0)
|Qk|2 dVg > 0

Also, clearly ‖Qk‖p ≈ λ
1
2

( 1
2
− 1
p

)

k , p ≥ 2.
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Spherical harmonics
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Background: size & concentration of eigenfunctions onS2

Lp(M) estimates and L2 concentration on geodesics
Improved bounds: Nonpositive curvature & dispersion

Saturation of Lp norms on S2

In my thesis with Stein (’85), showed that eigenfunctions on S2

satisfy

‖ek‖Lp(S2) . λ
δ(p)
k ‖ek‖L2(S2),

with

δ(p) =

{
2(1/2− 1/p)− 1/2, p ≥ 6
1
2(1

2 −
1
p), 2 ≤ p ≤ 6.

Conclude that
• Zonal functions, Zk, saturate Lp norms for “large” p (i.e.,
p ≥ 6)

• Highest weight spherical harmonics, Qk, saturate norms
for “small” p (i.e., 2 ≤ p ≤ 6)
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Background: size & concentration of eigenfunctions onS2

Lp(M) estimates and L2 concentration on geodesics
Improved bounds: Nonpositive curvature & dispersion

Some general results
• (S ’88) From the point of view of “size”, sphere is the worst

case:

If (M, g) is compact 2-dim boundaryless manifold,

‖eλ‖Lp(M)/‖eλ‖L2(M) . λδ(p), −∆geλ = λ2eλ (1)

Riemannian version of Stein-Tomas restriction theorem

Natural Questions:
• For which (M, g) (and exponents p), can you “beat” the
Lp-estimates in (1)?

• Some known results for “large” p (S-Zelditch,
S-Toth-Zelditch), but little known for “small” p

• Get improved bounds for p > 6 if at every x ∈M there is
zero measure of closed loops thru x...
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Lp-estimates in (1)?

• Some known results for “large” p (S-Zelditch,
S-Toth-Zelditch), but little known for “small” p

• Get improved bounds for p > 6 if at every x ∈M there is
zero measure of closed loops thru x...
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Background: size & concentration of eigenfunctions onS2

Lp(M) estimates and L2 concentration on geodesics
Improved bounds: Nonpositive curvature & dispersion

Remarks
Shrinking L2-mass, supγ∈Π

∫
T
λ
− 1

2
(γ) |eλ(x)|2 dVg = o(1), is

antithesis of what happened for the highest weight spherical
harmonics, Qk

Special case of Lp-dispersion:

‖eλ‖L4(M) = o(λ
1
8 ),

is equivalent, by interpolation, to the condition (2) above for all
2 < p < 6

Other results related to other condition, (3) (o(1)-L2-mass on
shrinking geodesic tubes): For γ ∈ Π,

Burq-Gérard-Tzvetkov ’07:
∫
γ |eλ|

2 ds . λ
1
2 ‖eλ‖2L2(M)

Bourgain ’09:
∫
γ |eλ|

2 ds . λ
1
p ‖eλ‖2Lp(M), p ≥ 2
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Background: size & concentration of eigenfunctions onS2

Lp(M) estimates and L2 concentration on geodesics
Improved bounds: Nonpositive curvature & dispersion

Corollary of Dispersion Theorem and Bourgain ’09:
T.F.A.E.: (2) (Lp dispersion, 2 < p < 6), (3) (non-L2

concentration on shrinking geod-tubes) and

∫
γ |eλ|

2 ds = o(λ
1
2 )

Punch line: Improving Lp(M) estimates in (open) range where
highest weight spherical harmonics saturate exactly equivalent
to improving restriction estimate of BGT:∫

γ
|eλ|2ds ≤ Cλ

1
2 ‖eλ‖22, γ ∈ Π. (4)

• Similar results for manifolds with concave boundary (S.
Ariturk)

• (w/ Zelditch and also Colding-Minicozzi) Above problems
related to questions about size of nodal sets

• C.S. Can improve (4) if γ not part of a periodic geodesic
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Background: size & concentration of eigenfunctions onS2

Lp(M) estimates and L2 concentration on geodesics
Improved bounds: Nonpositive curvature & dispersion

Improved BGT =⇒ o(λδ(p))-Lp(M)
Enough to consider p = 4. Showed that there is a constant C
so that for N = 1, 2, 3, . . .∫

M
|eλ(x)|4 dVg ≤ CN−1/2λ1/2‖eλ‖4L2(M)

+ CNλ1/2‖eλ‖2L2(M)

[
sup
γ∈Π

∫
T
λ−1/2 (γ)

|eλ(x)|2 dVg
]

(5)

• Similar estimate, but with λε-loss, proved by Bourgain
• Bourgain’s variant proved using ideas from Córdoba’s

(geometric) proof of Carleson-Sjölin theorem about
Bochner-Riesz means in R2 (an L4-theorem)

• Ours, uses these ideas together with alternate proof of
Hörmander (oscillatory integrals) and Gauss’ lemma
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Background: size & concentration of eigenfunctions onS2

Lp(M) estimates and L2 concentration on geodesics
Improved bounds: Nonpositive curvature & dispersion

Improved results for ≤ 0 curv in 2-d
Joint work with Zelditch: ‖eλ‖L2(γ) = o(λ1/4), and hence

‖eλ‖L4(M) = o(λ1/8)

Seems to be the first general improvement for p < 6, although
Zygmund: L4(T2) norms of e.f.s uniformly bounded and
Sarnak et al and Spinu: similar results other arithmetic cases
Bérard in the 70’s (implicitly) showed that

‖eλ‖L∞(M) = O(λ1/2/(log λ)1/2) =⇒ ‖eλ‖Lp(M) = o(λδ(p)),∀p > 6

Over the last year, Hassell and Tacy showed a better result,
‖eλ‖Lp(M) = Op(λ

δ(p)/(log λ)1/2) for all p > 6. Inspired our work,
but techniques a bit different (e.g., use a 2nd microlocalization)

Unknown about whether there’s o-results for L6(M) in 2-d, even
under assumption of < curvature. Interesting problem.
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Sarnak et al and Spinu: similar results other arithmetic cases
Bérard in the 70’s (implicitly) showed that

‖eλ‖L∞(M) = O(λ1/2/(log λ)1/2) =⇒ ‖eλ‖Lp(M) = o(λδ(p)),∀p > 6

Over the last year, Hassell and Tacy showed a better result,
‖eλ‖Lp(M) = Op(λ

δ(p)/(log λ)1/2) for all p > 6. Inspired our work,
but techniques a bit different (e.g., use a 2nd microlocalization)

Unknown about whether there’s o-results for L6(M) in 2-d, even
under assumption of < curvature. Interesting problem.
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Background: size & concentration of eigenfunctions onS2

Lp(M) estimates and L2 concentration on geodesics
Improved bounds: Nonpositive curvature & dispersion

Improved restriction bounds:

Setup: Let γ ∈ Πperiodic. Since√
−∆geλ = λeλ, have χ(T (λ−

√
−∆g))eλ = eλ if χ(0) = 1,

χ ∈ S. Can assume χ even and χ̂(t) = 0, |t| ≥ 1. Then

eλ =
1

2πT

∫ T

0
χ̂(t/T )eitλ cos(t

√
−∆g)eλ dt+χ(T (λ+

√
−∆g))eλ.

Last term is O(λ−N ), and so want, under the ≤ 0 curvature
assumption, improvement from time-averaging:

∥∥ 1

2πT

∫ T

0
χ̂(t/T )eitλ cos(t

√
−∆g)f dt

∥∥
L2(γ)

≤ T−σλ1/4‖f‖L2(M), λ large,

some σ > 0. A type of “dispersion” for wave equation for
non-positive curvature (false for S2).
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Background: size & concentration of eigenfunctions onS2

Lp(M) estimates and L2 concentration on geodesics
Improved bounds: Nonpositive curvature & dispersion

FIOs =⇒ can rule out most times
Can work in geodesic coordinates and assume

γ = { (s, 0) : −1/2 ≤ s ≤ 1/2}.

Then if f̂(ξ) = 0, |ξ1|/|ξ| ≥ θ > 0, have λ1/4 improvement over
what we need:∥∥ cos(t

√
−∆)f‖L2(γ×t∈[j,j+1]) ≤ Cθ‖f‖L2(M).

Above a nice FIO (loc canonical graph when acting on such f ).
This and wave-front set analysis allows you, in above
time-averaging integral, to cut away all times not near multiples
of primitive period, `(γ), of our γ ∈ Πperiodic, and more
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Background: size & concentration of eigenfunctions onS2

Lp(M) estimates and L2 concentration on geodesics
Improved bounds: Nonpositive curvature & dispersion

Hadamard: If (M, g) has ≤ 0 curvature and x0 ∈ γ ⊂M then
p = expx0 : Tx0M ' R2 →M is a universal cover. Let Γ be the
set of deck transformations (homeomorphisms α s.t. p ◦ α = p).

If g̃ is the pullback of g then solutions of wave equations, u(t, x),
on (M, g) correspond exactly to periodic ones on universal
cover (i.e. ũ(t, α(x̃)) = ũ(t, x̃), α ∈ Γ). Thus,(
cos t

√
−∆g

)
(x, y) =

∑
α∈Γ

(
cos t

√
−∆g̃

)
(x̃, α(ỹ)), if p(x̃) = x, p(ỹ) = y.

If |t| < T there are only O(exp(cT )) nonzero terms

DISASTROUS if we had to consider all of them (if curv < 0).

Miracle: Just have to consider α ∈ Γ in the stabilizer subgroup,
Stab(γ̃0) ⊂ Γ, of the lift, γ̃0, of γ0.
I.e., just need to consider O(T ) of above terms, as in geodesic
polar coordinates, ds2 = dr2 + ρ(r, θ)dθ2. Can “throw away”
rest, by FIO facts from previous slide.
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If |t| < T there are only O(exp(cT )) nonzero terms

DISASTROUS if we had to consider all of them (if curv < 0).

Miracle: Just have to consider α ∈ Γ in the stabilizer subgroup,
Stab(γ̃0) ⊂ Γ, of the lift, γ̃0, of γ0.
I.e., just need to consider O(T ) of above terms, as in geodesic
polar coordinates, ds2 = dr2 + ρ(r, θ)dθ2. Can “throw away”
rest, by FIO facts from previous slide.

Chris Sogge Dispersive properties of eigenfunctions 16/19



Background: size & concentration of eigenfunctions onS2

Lp(M) estimates and L2 concentration on geodesics
Improved bounds: Nonpositive curvature & dispersion

Hadamard: If (M, g) has ≤ 0 curvature and x0 ∈ γ ⊂M then
p = expx0 : Tx0M ' R2 →M is a universal cover. Let Γ be the
set of deck transformations (homeomorphisms α s.t. p ◦ α = p).

If g̃ is the pullback of g then solutions of wave equations, u(t, x),
on (M, g) correspond exactly to periodic ones on universal
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(x̃, α(ỹ)), if p(x̃) = x, p(ỹ) = y.
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If |t| < T there are only O(exp(cT )) nonzero terms

DISASTROUS if we had to consider all of them (if curv < 0).

Miracle: Just have to consider α ∈ Γ in the stabilizer subgroup,
Stab(γ̃0) ⊂ Γ, of the lift, γ̃0, of γ0.
I.e., just need to consider O(T ) of above terms, as in geodesic
polar coordinates, ds2 = dr2 + ρ(r, θ)dθ2. Can “throw away”
rest, by FIO facts from previous slide.

Chris Sogge Dispersive properties of eigenfunctions 16/19



Background: size & concentration of eigenfunctions onS2

Lp(M) estimates and L2 concentration on geodesics
Improved bounds: Nonpositive curvature & dispersion

Choose fund domain D ⊂ R2 for M . For x ∈M , ∃! x̃ ∈ D so
that p(x̃) = x. Then are reduced to showing∑

α∈Stab(γ̃0)
dg̃(x̃,α(ỹ))≤T

∥∥ 1

T

∫∫
χ̂( tT )eitλ cos t

√
−∆g̃(x̃, α(ỹ))f(y)dtdVg(y)

∥∥
L2(x∈γ)

≤ CT−σλ
1
4 ‖f‖L2(M), λ large.

Hadamard Parametrix:(
cos(t

√
−∆g̃)

)
(x̃, α(ỹ))

= a0(x̃, α(ỹ))(2π)−2

∫
R2

eiz·ξ cos t|ξ| dξ +Better, if |z| = dg̃(x̃, α(ỹ)).

Using O(|z|−
1
2 ) decay of Fourier integral, easy to see get above

with σ = 1/2 if principal Hadamard coefficient satisfies

a0(x̃, α(ỹ)) = O(1)
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Background: size & concentration of eigenfunctions onS2

Lp(M) estimates and L2 concentration on geodesics
Improved bounds: Nonpositive curvature & dispersion

Last miracle: Vol comparison bounds
If you write dVg in geodesic polar coordinates about x̃,

dVg(z̃) = ρ(r, θ)drdθ, r = dg̃(x̃, z̃),

then the principal Hadamard coefficient is

a0(x̃, z̃) = |ρ(r, θ)|−1/2.

By Günther comparison theorem have final miracle:

ρ(r, θ) ≥ r, if curv ≤ 0

(and, even better, ρ ≥ 1
κ sinh(κr), if curvature ≤ −κ2, with

κ > 0.)
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Background: size & concentration of eigenfunctions onS2

Lp(M) estimates and L2 concentration on geodesics
Improved bounds: Nonpositive curvature & dispersion

Thank You!

Chris Sogge Dispersive properties of eigenfunctions 19/19


	Background: size & concentration of eigenfunctions on S2
	Lp(M) estimates and L2 concentration on geodesics
	Improved bounds: Nonpositive curvature & dispersion

