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Riemannian manifold (1, g) and associated Laplacian A = A,

Eigenfunctions: —A e, (z) = A%e)(2), shall normalize
/ lexl2dv, = 1
M

* As A — oo, how “big” can the e, get?
+ How concentrated can their mass become? And where?
* When is there “dispersion” of e.f’s?

We’ll focus on the simplest case where M is a compact
manifold without boundary of dimension 2; however, many of
the results hold in greater generality.
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Model (extreme) case: S? with round metric

Eigenfunctions are restriction of harmonic polynomials to S?

Distinct eigenvalues are A\, = vk2 + k repeating with
multiplicity d = 2k + 1

Resulting eigenspace,

Hk = {ek,17 €k,25- -5 Ck.dy }7
—Asz ekj = (kz aF k)ek,j
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Let Hy : L?(S?) — Hy be the projection onto spherical

harmonics of degree k. lts kernel:

Hi(z,y) =) enj(@)er;(y)

Pick 2o € S2. Zonal function at zo:

Zi(y) = (Hy(wo,20) )~ Hy (w0, v)

Easy to see [ |Z(y)|* = 1. and, moreover,

Zk(xo) = (Hk(:vo,xo))_l/2Hk($o,x0) = \/dk ~ )\Ilc/Q
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Let Hy : L?(S?) — Hy be the projection onto spherical

harmonics of degree k. lts kernel:

Hi(z,y) =) enj(@)er;(y)

Pick 2o € S2. Zonal function at zo:
Zp(y) = (Hk(xo»xo))_lﬂHk(any)
Easy to see [ |Z(y)|* = 1. and, moreover,
Zi(x0) = (Hp(z0,w0) )~ Y2 (20, w0) = Vg, ~ g L2

Calculate: || Zy| g2y = Ap 7 /P72, p > 6.
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Highest weight spherical harmonics, {Q}:
Restriction of k/4(z; + iz2)* to S2.
Satisfies [ |Qk|*> ~ 1, and has L?-mass concentrated along
shrinking tubes around equator:

v0 = {(z1,72,73) € S?: 22 + 22 =1, 23 =0}
Specifically, since

|21 + ixo|* = (1 — 23)F/% = e n(1-23) r =573

Conclude that if 75(y) denotes §-ngbhd of (unit) geodesic -,

lim inf |Qk>dV, >0
k—oo JT 1 ()
Ap 2
55=2)

1
Also, clearly [|Qx|l, = A} , D> 2.
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Spherical harmonics

Y, o)

v, o)f
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In my thesis with Stein ('85), showed that eigenfunctions on S?
satisfy

)
lerllzoeszy S AP llexll2gs2)s
with
2(1/2 - 1/p) —1/2, p> 6
(5(])) - 1
2

(%_%)7 QSPSG

Conclude that
- Zonal functions, 7, saturate L” norms for “large” p (i.e.,
p > 6)
+ Highest weight spherical harmonics, @, saturate norms
for “small” p (i.e., 2 < p < 6)
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* (S°88) From the point of view of “size”,
If (M, g) is compact 2-dim boundaryless manifold,

lexllzooan/lleallzany S X®,  —Agen = Xex (1)

Riemannian version of Stein-Tomas restriction theorem

Natural Questions:
+ For which (M, g) (and exponents p), can you “beat” the
LP-estimates in (1)?
- Some known results for “large” p (S-Zelditch,
S-Toth-Zelditch), but little known for “small” p
+ Get improved bounds for p > 6 if at every = € M there is
zero measure of closed loops thru x...
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IT = all unit length geodesics. If v € I, let 75() be its J-tube

L? dispersion theorem:

(M, g) general compact 2-d, {e,, } L?-normalized
eigenfunctions. Then if 2 < p < 6 fixed

( )
llex; ey = o(A] ) )

Dl
Dl
=

if and only if

T / lex, (@2 dV, = o(1) 3)
v€Ell T_%(V)
A
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1
lexllzaary = o(A%),

is equivalent, by interpolation, to the condition (2) above for all
2<p<6

Other results related to other condition, (3) (o(1)-L?-mass on
shrinking geodesic tubes): For v € II,
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Corollary of Dispersion Theorem and Bourgain '09:
T.FEA.E.: (2) (L” dispersion, 2 < p < 6), (3) (non-L?

1
concentration on shrinking geod-tubes) and f7 lex|?ds = o(\2)

Improving LP(M) estimates in (open) range where
highest weight spherical harmonics saturate exactly equivalent
to improving restriction estimate of BGT:

[lextds < exbjeaty, e @
Y

- Similar results for manifolds with concave boundary (S.
Ariturk)

* (w/ Zelditch and also Colding-Minicozzi) Above problems
related to questions about size of nodal sets

- C.S. Can improve (4) if v not part of a periodic geodesic
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Enough to consider p = 4. Showed that there is a constant C
so thatfor N =1,2,3,...

/M lex(@)|* dVy < CNY2A2 65|14,

+CN,\1/2||eA||%2(M)[suE/
ye

ex@I?dv; | ()
7;—1/2(7)

+ Similar estimate, but with A*-loss, proved by Bourgain

+ Bourgain’s variant proved using ideas from Cérdoba’s
(geometric) proof of Carleson-Sjélin theorem about
Bochner-Riesz means in R? (an L*-theorem)

- Ours, uses these ideas together with alternate proof of
Hoérmander (oscillatory integrals) and Gauss’ lemma
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Joint work with Zelditch: |, |/;2(,, = o(A"/*), and hence
lexllzacary = o(AY®)

Seems to be the first general improvement for p < 6, although
Zygmund: L*(T?) norms of e.f.s uniformly bounded and
Sarnak et al and Spinu: similar results other arithmetic cases

Bérard in the 70’s (implicitly) showed that
lexllzosary = ON?/(1og )'/?) = leallLo(ary = o(A*®), ¥p > 6

Over the last year, Hassell and Tacy showed a better result,
leallze(ar = Op(X°®) /(log X)1/2) for all p > 6. Inspired our work,
but techniques a bit different (e.g., use a 2nd microlocalization)

Unknown about whether there’s o-results for L6(M) in 2-d, even
under assumption of < curvature. Interesting problem.
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Improved restriction bounds: Setup: Let v € Il ¢ i0qic- Since

V—Agex = Aey, have x(T'(A — /—Ay))ex = ey if x(0) =1,

x € S. Can assume x even and x(t) = 0, [t| > 1. Then
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Improved restriction bounds: Setup: Let v € Il ¢ i0qic- Since

V—Agex = Aey, have x(T'(A — /—Ay))ex = ey if x(0) =1,

x € S. Can assume x even and x(t) = 0, [t| > 1. Then

T

e =5 T R(t/T)e™ cos(tr/—Ay)ex dt +x(T(A+/—Ay))ex.

Last term is O(A="), and so want, under the < 0 curvature
assumption, improvement from time-averaging:

1 (T .
| om /0 R/ T)e cos(ty/=Bg)f dt | oy

< TN fll2(any, Alarge,

some o > 0. A type of “dispersion” for wave equation for
non-positive curvature (false for S?).
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LP (M) estimates and L2 concentration on geodesics
Improved bounds: Nonpositive curvature & dispersion

Can work in geodesic coordinates and assume

v={(50): —1/2 < s < 1/2}.

Then if f(¢) =0, |€1]/|¢| > 0 > 0, have A'/4 improvement over
what we need:

|| cos(tV=2A) fll 2y xtejjra) < Coll fllz2can-

Above a nice FIO (loc canonical graph when acting on such f).
This and wave-front set analysis allows you, in above
time-averaging integral, to cut away all times not near multiples
of primitive period, (v), of our v € Il,criodic, @aNd more
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p = exp,, : Ty,M ~ R* — M is a universal cover. Let T be the
set of deck transformations (homeomorphisms a s.t. po a = p).
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Hadamard: If (), g) has < 0 curvature and x(, € v C M then
p = exp,, : Ty,M ~ R* — M is a universal cover. Let T be the
set of deck transformations (homeomorphisms a s.t. po a = p).

If g is the pullback of g then solutions of wave equations, u(t, =),
on (M, g) correspond exactly to periodic ones on universal
cover (i.e. u(t,a(z)) = u(t,z), a« € I'). Thus,
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If |t| < T there are only O(exp(cT')) nonzero terms

(if curv < 0).
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Hadamard: If (), g) has < 0 curvature and x(, € v C M then
p = exp,, : TyoM =~ R? — M is a universal cover. Let I be the
set of deck transformations (homeomorphisms a s.t. po a = p).

If g is the pullback of g then solutions of wave equations, u(t, =),

on (M, g) correspond exactly to periodic ones on universal
cover (i.e. u(t,a(z)) = u(t,z), a« € I'). Thus,

(cost/=Ag)(z,y) = D (cost\/=Ag)(&,a()), if p(F) =z, p(§) = y.
ael
If |t| < T there are only O(exp(cT')) nonzero terms
(if curv < 0).

Miracle: Just have to consider « € T in the stabilizer subgroup,
Stab(7y) c T, of the lift, 49, of o.

l.e., just need to consider O(T') of above terms, as in geodesic
polar coordinates, ds? = dr? + p(r, 0)d6*. Can “throw away”
rest, by FIO facts from previous slide.
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Background: size & concentration of eigenfunctions on S2
LP (M) estimates and L2 concentration on geodesics
Improved bounds: Nonpositive curvature & dispersion

Choose fund domain D ¢ R? for M. Forz € M, 3! € D so
that p(z) = x. Then are reduced to showing

H// % Z’”‘co‘st —Ag(fﬂOé(g))f(y)dtdvg(y)HL2(zev)

aEStab 0

dg (Z,0(F ))§
< CT“’)ﬁHfHLz(M), A large.

Hadamard Parametrix:

(cos(t/=2Ag))(, a(y))

= ao(Z, a(y))(2m)~ / e'# cost|¢| d¢ + Better, if |2| = d3(7, a(7)).

R2
Using O(|z|‘%) decay of Fourier integral, easy to see get above
with ¢ = 1/2 if principal Hadamard coefficient satisfies
ao(z, (y)) = O(1)
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If you write dV, in geodesic polar coordinates about z,

dVy(2) = p(r,0)drdf, r = dz(Z, Z),
then the principal Hadamard coefficient is

ao(&, 2) = |p(r, 6)| /2.

By Glnther comparison theorem have final miracle:
p(r,0) >r, if curv <0

(and, even better, p > L sinh(xr), if curvature < —x?, with
k> 0.)
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