## On the dispersive properties of eigenfunctions

Chris Sogge

Johns Hopkins University

May 16, 2011

Chris Sogge Dispersive properties of eigenfunctions 1/19

#### General setting

Riemannian manifold (M,g) and associated Laplacian  $\Delta = \Delta_g$ 

#### General setting

Riemannian manifold (M,g) and associated Laplacian  $\Delta = \Delta_g$ 

**Eigenfunctions:**  $-\Delta_g e_\lambda(x) = \lambda^2 e_\lambda(x)$ , shall normalize

$$\int_M |e_\lambda|^2 \, dV_g = 1$$

#### General setting

Riemannian manifold (M,g) and associated Laplacian  $\Delta = \Delta_g$ 

**Eigenfunctions:**  $-\Delta_g e_\lambda(x) = \lambda^2 e_\lambda(x)$ , shall normalize

$$\int_M |e_\lambda|^2 \, dV_g = 1$$

Main issues:

• As  $\lambda \to \infty$ , how "big" can the  $e_{\lambda}$  get?

#### General setting

Riemannian manifold (M,g) and associated Laplacian  $\Delta = \Delta_g$ 

**Eigenfunctions:**  $-\Delta_g e_\lambda(x) = \lambda^2 e_\lambda(x)$ , shall normalize

$$\int_M |e_\lambda|^2 \, dV_g = 1$$

Main issues:

- As  $\lambda \to \infty$ , how "big" can the  $e_{\lambda}$  get?
- · How concentrated can their mass become? And where?

### General setting

Riemannian manifold (M,g) and associated Laplacian  $\Delta=\Delta_g$ 

**Eigenfunctions:**  $-\Delta_g e_\lambda(x) = \lambda^2 e_\lambda(x)$ , shall normalize

$$\int_M |e_\lambda|^2 \, dV_g = 1$$

Main issues:

- As  $\lambda \to \infty$ , how "big" can the  $e_{\lambda}$  get?
- · How concentrated can their mass become? And where?
- When is there "dispersion" of e.f.'s?

## General setting

Riemannian manifold (M,g) and associated Laplacian  $\Delta=\Delta_g$ 

**Eigenfunctions:**  $-\Delta_g e_\lambda(x) = \lambda^2 e_\lambda(x)$ , shall normalize

$$\int_M |e_\lambda|^2 \, dV_g = 1$$

Main issues:

- As  $\lambda \to \infty$ , how "big" can the  $e_{\lambda}$  get?
- · How concentrated can their mass become? And where?
- When is there "dispersion" of e.f.'s?

We'll focus on the simplest case where M is a compact manifold without boundary of dimension 2; however, many of the results hold in greater generality.

#### **Round Sphere**

Model (extreme) case:  $S^2$  with round metric

#### **Round Sphere**

#### Model (extreme) case: $S^2$ with round metric

Eigenfunctions are restriction of harmonic polynomials to  $S^2$ 

#### **Round Sphere**

#### Model (extreme) case: $S^2$ with round metric

Eigenfunctions are restriction of harmonic polynomials to  $S^2$ 

Distinct eigenvalues are  $\lambda_k = \sqrt{k^2 + k}$  repeating with multiplicity  $d_k = 2k + 1$ 

#### **Round Sphere**

#### Model (extreme) case: $S^2$ with round metric

Eigenfunctions are restriction of harmonic polynomials to  $S^2$ 

Distinct eigenvalues are  $\lambda_k = \sqrt{k^2 + k}$  repeating with multiplicity  $d_k = 2k + 1$ 

Resulting eigenspace, "spherical harmonics of degree k",

$$\mathcal{H}_k = \{e_{k,1}, e_{k,2}, \dots, e_{k,d_k}\},\$$

$$-\Delta_{S^2} e_{k,j} = (k^2 + k)e_{k,j}$$

#### Concentration at points

#### Concentration at points

Let  $H_k : L^2(S^2) \to \mathcal{H}_k$  be the projection onto spherical harmonics of degree k.

#### Concentration at points

Let  $H_k : L^2(S^2) \to \mathcal{H}_k$  be the projection onto spherical harmonics of degree k. Its kernel:

$$H_k(x,y) = \sum_{j=1}^{d_k} e_{k,j}(x) \overline{e_{k,j}(y)}$$

#### Concentration at points

Let  $H_k : L^2(S^2) \to \mathcal{H}_k$  be the projection onto spherical harmonics of degree k. Its kernel:

$$H_k(x,y) = \sum_{j=1}^{d_k} e_{k,j}(x) \overline{e_{k,j}(y)}$$

Pick  $x_0 \in S^2$ . Zonal function at  $x_0$ :

$$Z_k(y) = \left( H_k(x_0, x_0) \right)^{-1/2} H_k(x_0, y)$$

#### Concentration at points

Let  $H_k : L^2(S^2) \to \mathcal{H}_k$  be the projection onto spherical harmonics of degree k. Its kernel:

$$H_k(x,y) = \sum_{j=1}^{d_k} e_{k,j}(x) \overline{e_{k,j}(y)}$$

Pick  $x_0 \in S^2$ . Zonal function at  $x_0$ :

$$Z_k(y) = \left( H_k(x_0, x_0) \right)^{-1/2} H_k(x_0, y)$$

Easy to see  $\int |Z_k(y)|^2 = 1$ .

#### Concentration at points

Let  $H_k : L^2(S^2) \to \mathcal{H}_k$  be the projection onto spherical harmonics of degree k. Its kernel:

$$H_k(x,y) = \sum_{j=1}^{d_k} e_{k,j}(x) \overline{e_{k,j}(y)}$$

Pick  $x_0 \in S^2$ . Zonal function at  $x_0$ :

$$Z_k(y) = \left( H_k(x_0, x_0) \right)^{-1/2} H_k(x_0, y)$$

Easy to see  $\int |Z_k(y)|^2 = 1$ . and, moreover,

$$Z_k(x_0) = \left( H_k(x_0, x_0) \right)^{-1/2} H_k(x_0, x_0) = \sqrt{d_k} \approx \lambda_k^{1/2}$$

#### Concentration at points

Let  $H_k : L^2(S^2) \to \mathcal{H}_k$  be the projection onto spherical harmonics of degree k. Its kernel:

$$H_k(x,y) = \sum_{j=1}^{d_k} e_{k,j}(x) \overline{e_{k,j}(y)}$$

Pick  $x_0 \in S^2$ . Zonal function at  $x_0$ :

$$Z_k(y) = \left( H_k(x_0, x_0) \right)^{-1/2} H_k(x_0, y)$$

Easy to see  $\int |Z_k(y)|^2 = 1$ . and, moreover,

$$Z_k(x_0) = \left(H_k(x_0, x_0)\right)^{-1/2} H_k(x_0, x_0) = \sqrt{d_k} \approx \lambda_k^{1/2}$$

Calculate:  $||Z_k||_{L^p(S^2)} \approx \lambda_k^{2(1/2-1/p)-1/2}, p \ge 6.$ 

#### Concentration on periodic geodesics

#### Concentration on periodic geodesics

Highest weight spherical harmonics,  $\{Q_k\}$ :

#### Concentration on periodic geodesics

Highest weight spherical harmonics,  $\{Q_k\}$ : Restriction of  $k^{1/4}(x_1 + ix_2)^k$  to  $S^2$ .

#### Concentration on periodic geodesics

Highest weight spherical harmonics,  $\{Q_k\}$ : Restriction of  $k^{1/4}(x_1 + ix_2)^k$  to  $S^2$ .

Satisfies  $\int |Q_k|^2 \approx 1$ , and has  $L^2$ -mass concentrated along shrinking tubes around *equator:* 

 $\gamma_0 = \{(x_1, x_2, x_3) \in S^2 : x_1^2 + x_2^2 = 1, x_3 = 0\}$ 

#### Concentration on periodic geodesics

Highest weight spherical harmonics,  $\{Q_k\}$ : Restriction of  $k^{1/4}(x_1 + ix_2)^k$  to  $S^2$ .

Satisfies  $\int |Q_k|^2 \approx 1$ , and has  $L^2$ -mass concentrated along shrinking tubes around *equator:* 

 $\gamma_0 = \{(x_1, x_2, x_3) \in S^2: x_1^2 + x_2^2 = 1, x_3 = 0\}$ Specifically, since

$$|x_1 + ix_2|^k = (1 - x_3^2)^{k/2} = e^{\frac{k}{2}\ln(1 - x_3^2)} \approx e^{-\frac{k}{2}x_3^2}$$

Conclude that if  $\mathcal{T}_{\delta}(\gamma)$  denotes  $\delta$ -ngbhd of (unit) geodesic  $\gamma$ ,

#### Concentration on periodic geodesics

Highest weight spherical harmonics,  $\{Q_k\}$ : Restriction of  $k^{1/4}(x_1 + ix_2)^k$  to  $S^2$ .

Satisfies  $\int |Q_k|^2 \approx 1$ , and has  $L^2$ -mass concentrated along shrinking tubes around *equator:* 

 $\gamma_0 = \{(x_1, x_2, x_3) \in S^2: \, x_1^2 + x_2^2 = 1, \, x_3 = 0\}$  Specifically, since

$$|x_1 + ix_2|^k = (1 - x_3^2)^{k/2} = e^{\frac{k}{2}\ln(1 - x_3^2)} \approx e^{-\frac{k}{2}x_3^2}$$

Conclude that if  $\mathcal{T}_{\delta}(\gamma)$  denotes  $\delta$ -ngbhd of (unit) geodesic  $\gamma$ ,

$$\liminf_{k \to \infty} \int_{\mathcal{T}_{\lambda_k} - \frac{1}{2}(\gamma_0)} |Q_k|^2 \, dV_g > 0$$

Als

#### Concentration on periodic geodesics

Highest weight spherical harmonics,  $\{Q_k\}$ : Restriction of  $k^{1/4}(x_1 + ix_2)^k$  to  $S^2$ .

Satisfies  $\int |Q_k|^2 \approx 1$ , and has  $L^2$ -mass concentrated along shrinking tubes around *equator:* 

 $\gamma_0 = \{(x_1, x_2, x_3) \in S^2: \, x_1^2 + x_2^2 = 1, \, x_3 = 0\}$  Specifically, since

$$|x_1 + ix_2|^k = (1 - x_3^2)^{k/2} = e^{\frac{k}{2}\ln(1 - x_3^2)} \approx e^{-\frac{k}{2}x_3^2}$$

Conclude that if  $\mathcal{T}_{\delta}(\gamma)$  denotes  $\delta$ -ngbhd of (unit) geodesic  $\gamma$ ,

$$\begin{split} \liminf_{k o\infty} \int_{\mathcal{T}_{\lambda_k}-rac{1}{2}(\gamma_0)} |Q_k|^2 \, dV_g > 0 \end{split}$$
o, clearly  $\|Q_k\|_p pprox \lambda_k^{rac{1}{2}(rac{1}{2}-rac{1}{p})}, \ p\geq 2. \end{split}$ 

#### Spherical harmonics



Chris Sogge Dispersive properties of eigenfunctions 6/19

## Saturation of $L^p$ norms on $S^2$

In my thesis with Stein ('85), showed that eigenfunctions on  $S^2$  satisfy

$$||e_k||_{L^p(S^2)} \lesssim \lambda_k^{\delta(p)} ||e_k||_{L^2(S^2)},$$

with

$$\delta(p) = \begin{cases} 2(1/2 - 1/p) - 1/2, \ p \ge 6\\ \frac{1}{2}(\frac{1}{2} - \frac{1}{p}), \ 2 \le p \le 6. \end{cases}$$

Conclude that

- Zonal functions,  $Z_k$ , saturate  $L^p$  norms for "large" p (i.e.,  $p \ge 6$ )
- Highest weight spherical harmonics,  $Q_k$ , saturate norms for "small" p (i.e.,  $2 \le p \le 6$ )

## Some general results

 (S '88) From the point of view of "size", sphere is the worst case:

## Some general results

• (S '88) From the point of view of "size", sphere is the worst case: If (M,g) is compact 2-dim boundaryless manifold,

 $\|e_{\lambda}\|_{L^{p}(M)}/\|e_{\lambda}\|_{L^{2}(M)} \lesssim \lambda^{\delta(p)}, \quad -\Delta_{g}e_{\lambda} = \lambda^{2}e_{\lambda}$  (1)

### Some general results

• (S '88) From the point of view of "size", sphere is the worst case: If (M, g) is compact 2-dim boundaryless manifold,  $\|e_{\lambda}\|_{L^{p}(M)}/\|e_{\lambda}\|_{L^{2}(M)} \lesssim \lambda^{\delta(p)}, \quad -\Delta_{g}e_{\lambda} = \lambda^{2}e_{\lambda}$  (1)

Riemannian version of Stein-Tomas restriction theorem

## Some general results

• (S '88) From the point of view of "size", sphere is the worst case: If (M,g) is compact 2-dim boundaryless manifold,

 $\|e_{\lambda}\|_{L^{p}(M)}/\|e_{\lambda}\|_{L^{2}(M)} \lesssim \lambda^{\delta(p)}, \quad -\Delta_{g}e_{\lambda} = \lambda^{2}e_{\lambda}$  (1)

Riemannian version of Stein-Tomas restriction theorem

#### **Natural Questions:**

• For which (M, g) (and exponents p), can you "beat" the  $L^p$ -estimates in (1)?

## Some general results

• (S '88) From the point of view of "size", sphere is the worst case: If (M,g) is compact 2-dim boundaryless manifold,

 $\|e_{\lambda}\|_{L^{p}(M)}/\|e_{\lambda}\|_{L^{2}(M)} \lesssim \lambda^{\delta(p)}, \quad -\Delta_{g}e_{\lambda} = \lambda^{2}e_{\lambda}$  (1)

Riemannian version of Stein-Tomas restriction theorem

#### **Natural Questions:**

- For which (M, g) (and exponents p), can you "beat" the  $L^p$ -estimates in (1)?
- Some known results for "large" p (S-Zelditch, S-Toth-Zelditch), but little known for "small" p

## Some general results

• (S '88) From the point of view of "size", sphere is the worst case: If (M,g) is compact 2-dim boundaryless manifold,

 $\|e_{\lambda}\|_{L^{p}(M)}/\|e_{\lambda}\|_{L^{2}(M)} \lesssim \lambda^{\delta(p)}, \quad -\Delta_{g}e_{\lambda} = \lambda^{2}e_{\lambda}$  (1)

Riemannian version of Stein-Tomas restriction theorem

#### **Natural Questions:**

- For which (M, g) (and exponents p), can you "beat" the  $L^p$ -estimates in (1)?
- Some known results for "large" p (S-Zelditch, S-Toth-Zelditch), but little known for "small" p
- Get improved bounds for p > 6 if at every  $x \in M$  there is zero measure of closed loops thru x...

# Condition for $L^p$ -norm dispersion for "small" p

Chris Sogge Dispersive properties of eigenfunctions 9/19

## Condition for $L^p$ -norm dispersion for "small" p

 $\Pi =$ all unit length geodesics. If  $\gamma \in \Pi$ , let  $\mathcal{T}_{\delta}(\gamma)$  be its  $\delta$ -tube

## Condition for $L^p$ -norm dispersion for "small" p

 $\Pi$  = all unit length geodesics. If  $\gamma \in \Pi$ , let  $\mathcal{T}_{\delta}(\gamma)$  be its  $\delta$ -tube  $L^p$  dispersion theorem: (*M*, *g*) general compact 2-d,  $\{e_{\lambda_i}\}$   $L^2$ -normalized

eigenfunctions. Then if 2 fixed
# Condition for $L^p$ -norm dispersion for "small" p

 $\Pi$  = all unit length geodesics. If  $\gamma \in \Pi$ , let  $\mathcal{T}_{\delta}(\gamma)$  be its  $\delta$ -tube  $L^p$  dispersion theorem: (M, q) general compact 2-d  $\{e_{\lambda} \in L^2$ -normalized

(M,g) general compact 2-d,  $\{e_{\lambda_j}\} L^2$ -normalized eigenfunctions. Then if 2 fixed

$$\|e_{\lambda_j}\|_{L^p(M)} = o(\lambda_j^{\frac{1}{2}(\frac{1}{2} - \frac{1}{p})})$$
(2)

# Condition for $L^p$ -norm dispersion for "small" p

 $Π = all unit length geodesics. If <math>\gamma \in Π$ , let  $\mathcal{T}_{\delta}(\gamma)$  be its δ-tube  $L^p$  dispersion theorem: (M,g) general compact 2-d,  $\{e_{\lambda_i}\}$   $L^2$ -normalized

eigenfunctions. Then if 2 fixed

$$\|e_{\lambda_j}\|_{L^p(M)} = o(\lambda_j^{\frac{1}{2}(\frac{1}{2} - \frac{1}{p})})$$
(2)

if and only if

$$\sup_{\gamma \in \Pi} \int_{\mathcal{T}_{\lambda_j^{-\frac{1}{2}}}(\gamma)} |e_{\lambda_j}(x)|^2 \, dV_g = o(1) \tag{3}$$

#### Remarks

Shrinking  $L^2$ -mass,  $\sup_{\gamma \in \Pi} \int_{\mathcal{T}_{\lambda}^{-\frac{1}{2}}(\gamma)} |e_{\lambda}(x)|^2 dV_g = o(1)$ , is antithesis of what happened for the highest weight spherical harmonics,  $Q_k$ 

### Remarks

Shrinking  $L^2$ -mass,  $\sup_{\gamma \in \Pi} \int_{\mathcal{T}_{\lambda} - \frac{1}{2}} (\gamma) |e_{\lambda}(x)|^2 dV_g = o(1)$ , is antithesis of what happened for the highest weight spherical harmonics,  $Q_k$ 

Special case of  $L^p$ -dispersion:

$$||e_{\lambda}||_{L^4(M)} = o(\lambda^{\frac{1}{8}}),$$

is equivalent, by interpolation, to the condition (2) above for all 2

## Remarks

Shrinking  $L^2$ -mass,  $\sup_{\gamma \in \Pi} \int_{\mathcal{T}_{\lambda}^{-\frac{1}{2}}(\gamma)} |e_{\lambda}(x)|^2 dV_g = o(1)$ , is antithesis of what happened for the highest weight spherical harmonics,  $Q_k$ 

Special case of  $L^p$ -dispersion:

$$|e_{\lambda}||_{L^4(M)} = o(\lambda^{\frac{1}{8}}),$$

is equivalent, by interpolation, to the condition (2) above for all 2

Other results related to other condition, (3) (o(1)- $L^2$ -mass on shrinking geodesic tubes): For  $\gamma \in \Pi$ ,

## Remarks

Shrinking  $L^2$ -mass,  $\sup_{\gamma \in \Pi} \int_{\mathcal{T}_{\lambda}^{-\frac{1}{2}}(\gamma)} |e_{\lambda}(x)|^2 dV_g = o(1)$ , is antithesis of what happened for the highest weight spherical harmonics,  $Q_k$ 

Special case of  $L^p$ -dispersion:

$$|e_{\lambda}||_{L^4(M)} = o(\lambda^{\frac{1}{8}}),$$

is equivalent, by interpolation, to the condition (2) above for all 2

Other results related to other condition, (3) (o(1)- $L^2$ -mass on shrinking geodesic tubes): For  $\gamma \in \Pi$ ,

Burq-Gérard-Tzvetkov '07:

## Remarks

Shrinking  $L^2$ -mass,  $\sup_{\gamma \in \Pi} \int_{\mathcal{T}_{\lambda}^{-\frac{1}{2}}(\gamma)} |e_{\lambda}(x)|^2 dV_g = o(1)$ , is antithesis of what happened for the highest weight spherical harmonics,  $Q_k$ 

Special case of  $L^p$ -dispersion:

$$|e_{\lambda}||_{L^4(M)} = o(\lambda^{\frac{1}{8}}),$$

is equivalent, by interpolation, to the condition (2) above for all 2

Other results related to other condition, (3) (o(1)- $L^2$ -mass on shrinking geodesic tubes): For  $\gamma \in \Pi$ ,

Burq-Gérard-Tzvetkov '07:  $\int_{\gamma} |e_{\lambda}|^2 ds \lesssim \lambda^{\frac{1}{2}} \|e_{\lambda}\|_{L^2(M)}^2$ 

## Remarks

Shrinking  $L^2$ -mass,  $\sup_{\gamma \in \Pi} \int_{\mathcal{T}_{\lambda} - \frac{1}{2}} (\gamma) |e_{\lambda}(x)|^2 dV_g = o(1)$ , is antithesis of what happened for the highest weight spherical harmonics,  $Q_k$ 

Special case of  $L^p$ -dispersion:

$$|e_{\lambda}||_{L^4(M)} = o(\lambda^{\frac{1}{8}}),$$

is equivalent, by interpolation, to the condition (2) above for all 2

Other results related to other condition, (3) (o(1)- $L^2$ -mass on shrinking geodesic tubes): For  $\gamma \in \Pi$ ,

Burq-Gérard-Tzvetkov '07:  $\int_{\gamma} |e_{\lambda}|^2 ds \lesssim \lambda^{\frac{1}{2}} \|e_{\lambda}\|_{L^2(M)}^2$ 

Bourgain '09:

# Remarks

Shrinking  $L^2$ -mass,  $\sup_{\gamma \in \Pi} \int_{\mathcal{T}_{\lambda}^{-\frac{1}{2}}(\gamma)} |e_{\lambda}(x)|^2 dV_g = o(1)$ , is antithesis of what happened for the highest weight spherical harmonics,  $Q_k$ 

Special case of  $L^p$ -dispersion:

$$|e_{\lambda}||_{L^4(M)} = o(\lambda^{\frac{1}{8}}),$$

is equivalent, by interpolation, to the condition (2) above for all 2

Other results related to other condition, (3) (o(1)- $L^2$ -mass on shrinking geodesic tubes): For  $\gamma \in \Pi$ ,

Burq-Gérard-Tzvetkov '07:  $\int_{\gamma} |e_{\lambda}|^2 \, ds \lesssim \lambda^{rac{1}{2}} \|e_{\lambda}\|^2_{L^2(M)}$ 

Bourgain '09:  $\int_{\gamma} |e_{\lambda}|^2 ds \lesssim \lambda^{\frac{1}{p}} \|e_{\lambda}\|_{L^p(M)}^2, \ p \geq 2$ 

> Corollary of Dispersion Theorem and Bourgain '09: T.F.A.E.: (2) ( $L^p$  dispersion,  $2 ), (3) (non-<math>L^2$  concentration on shrinking geod-tubes) and

> Corollary of Dispersion Theorem and Bourgain '09: T.F.A.E.: (2) ( $L^p$  dispersion,  $2 ), (3) (non-<math>L^2$  concentration on shrinking geod-tubes) and  $\int_{\gamma} |e_{\lambda}|^2 ds = o(\lambda^{\frac{1}{2}})$

> Corollary of Dispersion Theorem and Bourgain '09: T.F.A.E.: (2) ( $L^p$  dispersion,  $2 ), (3) (non-<math>L^2$  concentration on shrinking geod-tubes) and  $\int_{\gamma} |e_{\lambda}|^2 ds = o(\lambda^{\frac{1}{2}})$

> **Punch line:** Improving  $L^{p}(M)$  estimates in (open) range where highest weight spherical harmonics saturate exactly equivalent to improving restriction estimate of BGT:

$$\int_{\gamma} |e_{\lambda}|^2 ds \le C\lambda^{\frac{1}{2}} \|e_{\lambda}\|_2^2, \ \gamma \in \Pi.$$
(4)

> Corollary of Dispersion Theorem and Bourgain '09: T.F.A.E.: (2) ( $L^p$  dispersion,  $2 ), (3) (non-<math>L^2$  concentration on shrinking geod-tubes) and  $\int_{\gamma} |e_{\lambda}|^2 ds = o(\lambda^{\frac{1}{2}})$

> **Punch line:** Improving  $L^{p}(M)$  estimates in (open) range where highest weight spherical harmonics saturate exactly equivalent to improving restriction estimate of BGT:

$$\int_{\gamma} |e_{\lambda}|^2 ds \le C\lambda^{\frac{1}{2}} \|e_{\lambda}\|_2^2, \ \gamma \in \Pi.$$
(4)

Similar results for manifolds with concave boundary (S. Ariturk)

> Corollary of Dispersion Theorem and Bourgain '09: T.F.A.E.: (2) ( $L^p$  dispersion,  $2 ), (3) (non-<math>L^2$  concentration on shrinking geod-tubes) and  $\int_{\gamma} |e_{\lambda}|^2 ds = o(\lambda^{\frac{1}{2}})$

> **Punch line:** Improving  $L^{p}(M)$  estimates in (open) range where highest weight spherical harmonics saturate exactly equivalent to improving restriction estimate of BGT:

$$\int_{\gamma} |e_{\lambda}|^2 ds \le C\lambda^{\frac{1}{2}} \|e_{\lambda}\|_2^2, \ \gamma \in \Pi.$$
(4)

- Similar results for manifolds with concave boundary (S. Ariturk)
- (w/ Zelditch and also Colding-Minicozzi) Above problems related to questions about size of nodal sets

> Corollary of Dispersion Theorem and Bourgain '09: T.F.A.E.: (2) ( $L^p$  dispersion,  $2 ), (3) (non-<math>L^2$  concentration on shrinking geod-tubes) and  $\int_{\gamma} |e_{\lambda}|^2 ds = o(\lambda^{\frac{1}{2}})$

> **Punch line:** Improving  $L^{p}(M)$  estimates in (open) range where highest weight spherical harmonics saturate exactly equivalent to improving restriction estimate of BGT:

$$\int_{\gamma} |e_{\lambda}|^2 ds \le C\lambda^{\frac{1}{2}} \|e_{\lambda}\|_2^2, \ \gamma \in \Pi.$$
(4)

- Similar results for manifolds with concave boundary (S. Ariturk)
- (w/ Zelditch and also Colding-Minicozzi) Above problems related to questions about size of nodal sets
- C.S. Can improve (4) if  $\gamma$  not part of a periodic geodesic

# Improved BGT $\implies o(\lambda^{\delta(p)})-L^p(M)$

Enough to consider p = 4. Showed that there is a constant C so that for N = 1, 2, 3, ...

$$\int_{M} |e_{\lambda}(x)|^{4} dV_{g} \leq C N^{-1/2} \lambda^{1/2} ||e_{\lambda}||^{4}_{L^{2}(M)} + C N \lambda^{1/2} ||e_{\lambda}||^{2}_{L^{2}(M)} \Big[ \sup_{\gamma \in \Pi} \int_{\mathcal{T}_{\lambda^{-1/2}}(\gamma)} |e_{\lambda}(x)|^{2} dV_{g} \Big]$$
(5)

# Improved BGT $\implies o(\lambda^{\delta(p)}) - L^p(M)$

Enough to consider p = 4. Showed that there is a constant C so that for N = 1, 2, 3, ...

$$\int_{M} |e_{\lambda}(x)|^{4} dV_{g} \leq CN^{-1/2} \lambda^{1/2} ||e_{\lambda}||^{4}_{L^{2}(M)} + CN\lambda^{1/2} ||e_{\lambda}||^{2}_{L^{2}(M)} \Big[ \sup_{\gamma \in \Pi} \int_{\mathcal{T}_{\lambda^{-1/2}}(\gamma)} |e_{\lambda}(x)|^{2} dV_{g} \Big]$$
(5)

• Similar estimate, but with  $\lambda^{\varepsilon}$ -loss, proved by Bourgain

# Improved BGT $\implies o(\lambda^{\delta(p)}) - L^p(M)$

Enough to consider p = 4. Showed that there is a constant C so that for N = 1, 2, 3, ...

$$\int_{M} |e_{\lambda}(x)|^{4} dV_{g} \leq C N^{-1/2} \lambda^{1/2} ||e_{\lambda}||^{4}_{L^{2}(M)} + C N \lambda^{1/2} ||e_{\lambda}||^{2}_{L^{2}(M)} \Big[ \sup_{\gamma \in \Pi} \int_{\mathcal{T}_{\lambda^{-1/2}}(\gamma)} |e_{\lambda}(x)|^{2} dV_{g} \Big]$$
(5)

- Similar estimate, but with  $\lambda^{\varepsilon}$ -loss, proved by Bourgain
- Bourgain's variant proved using ideas from Córdoba's (geometric) proof of Carleson-Sjölin theorem about Bochner-Riesz means in R<sup>2</sup> (an L<sup>4</sup>-theorem)

# Improved BGT $\implies o(\lambda^{\delta(p)}) - L^p(M)$

Enough to consider p = 4. Showed that there is a constant C so that for N = 1, 2, 3, ...

$$\int_{M} |e_{\lambda}(x)|^{4} dV_{g} \leq CN^{-1/2} \lambda^{1/2} ||e_{\lambda}||^{4}_{L^{2}(M)} + CN\lambda^{1/2} ||e_{\lambda}||^{2}_{L^{2}(M)} \Big[ \sup_{\gamma \in \Pi} \int_{\mathcal{T}_{\lambda^{-1/2}}(\gamma)} |e_{\lambda}(x)|^{2} dV_{g} \Big]$$
(5)

- Similar estimate, but with  $\lambda^{\varepsilon}$ -loss, proved by Bourgain
- Bourgain's variant proved using ideas from Córdoba's (geometric) proof of Carleson-Sjölin theorem about Bochner-Riesz means in  $\mathbb{R}^2$  (an  $L^4$ -theorem)
- Ours, uses these ideas together with alternate proof of Hörmander (oscillatory integrals) and Gauss' lemma

# Improved results for $\leq 0$ curv in 2-d

Joint work with Zelditch:  $||e_{\lambda}||_{L^{2}(\gamma)} = o(\lambda^{1/4})$ , and hence  $||e_{\lambda}||_{L^{4}(M)} = o(\lambda^{1/8})$ 

# Improved results for $\leq 0$ curv in 2-d

Joint work with Zelditch:  $||e_{\lambda}||_{L^{2}(\gamma)} = o(\lambda^{1/4})$ , and hence  $||e_{\lambda}||_{L^{4}(M)} = o(\lambda^{1/8})$ 

Seems to be the first general improvement for p < 6, although **Zygmund:**  $L^4(\mathbb{T}^2)$  norms of e.f.s uniformly bounded and **Sarnak et al and Spinu:** similar results other arithmetic cases

# Improved results for $\leq 0$ curv in 2-d

Joint work with Zelditch:  $\|e_{\lambda}\|_{L^{2}(\gamma)} = o(\lambda^{1/4})$ , and hence  $\|e_{\lambda}\|_{L^{4}(M)} = o(\lambda^{1/8})$ 

Seems to be the first general improvement for p < 6, although **Zygmund:**  $L^4(\mathbb{T}^2)$  norms of e.f.s uniformly bounded and **Sarnak et al and Spinu:** similar results other arithmetic cases **Bérard** in the 70's (implicitly) showed that

$$\|e_{\lambda}\|_{L^{\infty}(M)} = O(\lambda^{1/2}/(\log \lambda)^{1/2}) \implies \|e_{\lambda}\|_{L^{p}(M)} = o(\lambda^{\delta(p)}), \forall p > 6$$

# Improved results for $\leq 0$ curv in 2-d

Joint work with Zelditch:  $\|e_{\lambda}\|_{L^{2}(\gamma)} = o(\lambda^{1/4})$ , and hence  $\|e_{\lambda}\|_{L^{4}(M)} = o(\lambda^{1/8})$ 

Seems to be the first general improvement for p < 6, although **Zygmund:**  $L^4(\mathbb{T}^2)$  norms of e.f.s uniformly bounded and **Sarnak et al and Spinu:** similar results other arithmetic cases **Bérard** in the 70's (implicitly) showed that

 $\|e_{\lambda}\|_{L^{\infty}(M)} = O(\lambda^{1/2}/(\log \lambda)^{1/2}) \implies \|e_{\lambda}\|_{L^{p}(M)} = o(\lambda^{\delta(p)}), \forall p > 6$ 

Over the last year, **Hassell and Tacy** showed a better result,  $\|e_{\lambda}\|_{L^{p}(M)} = O_{p}(\lambda^{\delta(p)}/(\log \lambda)^{1/2})$  for all p > 6. Inspired our work, but techniques a bit different (e.g., use a 2nd microlocalization)

# Improved results for $\leq 0$ curv in 2-d

Joint work with Zelditch:  $\|e_{\lambda}\|_{L^{2}(\gamma)} = o(\lambda^{1/4})$ , and hence  $\|e_{\lambda}\|_{L^{4}(M)} = o(\lambda^{1/8})$ 

Seems to be the first general improvement for p < 6, although **Zygmund:**  $L^4(\mathbb{T}^2)$  norms of e.f.s uniformly bounded and **Sarnak et al and Spinu:** similar results other arithmetic cases **Bérard** in the 70's (implicitly) showed that

 $\|e_{\lambda}\|_{L^{\infty}(M)} = O(\lambda^{1/2}/(\log \lambda)^{1/2}) \implies \|e_{\lambda}\|_{L^{p}(M)} = o(\lambda^{\delta(p)}), \forall p > 6$ 

Over the last year, **Hassell and Tacy** showed a better result,  $\|e_{\lambda}\|_{L^{p}(M)} = O_{p}(\lambda^{\delta(p)}/(\log \lambda)^{1/2})$  for all p > 6. Inspired our work, but techniques a bit different (e.g., use a 2nd microlocalization) Unknown about whether there's *o*-results for  $L^{6}(M)$  in 2-d, even

under assumption of < curvature. Interesting problem.

#### Improved restriction bounds:

Improved restriction bounds: Setup: Let  $\gamma \in \Pi_{periodic}$ . Since  $\sqrt{-\Delta_g}e_{\lambda} = \lambda e_{\lambda}$ , have  $\chi(T(\lambda - \sqrt{-\Delta_g}))e_{\lambda} = e_{\lambda}$  if  $\chi(0) = 1$ ,  $\chi \in S$ .

Improved restriction bounds: Setup: Let  $\gamma \in \Pi_{periodic}$ . Since  $\sqrt{-\Delta_g}e_{\lambda} = \lambda e_{\lambda}$ , have  $\chi(T(\lambda - \sqrt{-\Delta_g}))e_{\lambda} = e_{\lambda}$  if  $\chi(0) = 1$ ,  $\chi \in S$ . Can assume  $\chi$  even and  $\hat{\chi}(t) = 0$ ,  $|t| \ge 1$ . Then

$$e_{\lambda} = \frac{1}{2\pi T} \int_0^T \hat{\chi}(t/T) e^{it\lambda} \cos(t\sqrt{-\Delta_g}) e_{\lambda} dt + \chi(T(\lambda + \sqrt{-\Delta_g})) e_{\lambda}.$$

Improved restriction bounds: Setup: Let  $\gamma \in \Pi_{periodic}$ . Since  $\sqrt{-\Delta_g}e_{\lambda} = \lambda e_{\lambda}$ , have  $\chi(T(\lambda - \sqrt{-\Delta_g}))e_{\lambda} = e_{\lambda}$  if  $\chi(0) = 1$ ,  $\chi \in S$ . Can assume  $\chi$  even and  $\hat{\chi}(t) = 0$ ,  $|t| \ge 1$ . Then

$$e_{\lambda} = \frac{1}{2\pi T} \int_0^T \hat{\chi}(t/T) e^{it\lambda} \cos(t\sqrt{-\Delta_g}) e_{\lambda} dt + \chi(T(\lambda + \sqrt{-\Delta_g})) e_{\lambda}.$$

Last term is  $O(\lambda^{-N})$ , and so want, under the  $\leq 0$  curvature assumption, improvement from time-averaging:

$$\begin{split} \left\| \frac{1}{2\pi T} \int_0^T \hat{\chi}(t/T) e^{it\lambda} \cos(t\sqrt{-\Delta_g}) f \, dt \, \right\|_{L^2(\gamma)} \\ &\leq T^{-\sigma} \lambda^{1/4} \|f\|_{L^2(M)}, \, \lambda \, \text{large}, \end{split}$$

some  $\sigma > 0$ .

Improved restriction bounds: Setup: Let  $\gamma \in \Pi_{periodic}$ . Since  $\sqrt{-\Delta_g}e_{\lambda} = \lambda e_{\lambda}$ , have  $\chi(T(\lambda - \sqrt{-\Delta_g}))e_{\lambda} = e_{\lambda}$  if  $\chi(0) = 1$ ,  $\chi \in S$ . Can assume  $\chi$  even and  $\hat{\chi}(t) = 0$ ,  $|t| \ge 1$ . Then

$$e_{\lambda} = \frac{1}{2\pi T} \int_0^T \hat{\chi}(t/T) e^{it\lambda} \cos(t\sqrt{-\Delta_g}) e_{\lambda} dt + \chi(T(\lambda + \sqrt{-\Delta_g})) e_{\lambda}.$$

Last term is  $O(\lambda^{-N})$ , and so want, under the  $\leq 0$  curvature assumption, improvement from **time-averaging**:

$$\begin{split} \left\| \frac{1}{2\pi T} \int_0^T \hat{\chi}(t/T) e^{it\lambda} \cos(t\sqrt{-\Delta_g}) f \, dt \, \right\|_{L^2(\gamma)} \\ &\leq T^{-\sigma} \lambda^{1/4} \|f\|_{L^2(M)}, \, \lambda \text{ large}, \end{split}$$

some  $\sigma > 0$ . A type of "dispersion" for wave equation for non-positive curvature (false for  $S^2$ ).

### $FOS \implies$ can rule out most times

Can work in geodesic coordinates and assume

$$\gamma = \{ (s,0) : -1/2 \le s \le 1/2 \}.$$

### $FOs \implies$ can rule out most times

Can work in geodesic coordinates and assume

 $\gamma = \{ (s,0) : -1/2 \le s \le 1/2 \}.$ 

Then if  $\hat{f}(\xi) = 0$ ,  $|\xi_1|/|\xi| \ge \theta > 0$ , have  $\lambda^{1/4}$  improvement over what we need:

 $\|\cos(t\sqrt{-\Delta})f\|_{L^{2}(\gamma \times t \in [j,j+1])} \le C_{\theta}\|f\|_{L^{2}(M)}.$ 

## $FOs \implies$ can rule out most times

Can work in geodesic coordinates and assume

 $\gamma = \{ (s,0) : -1/2 \le s \le 1/2 \}.$ 

Then if  $\hat{f}(\xi) = 0$ ,  $|\xi_1|/|\xi| \ge \theta > 0$ , have  $\lambda^{1/4}$  improvement over what we need:

 $\|\cos(t\sqrt{-\Delta})f\|_{L^{2}(\gamma \times t \in [j,j+1])} \le C_{\theta}\|f\|_{L^{2}(M)}.$ 

Above a nice FIO (loc canonical graph when acting on such f).

# FIOs $\implies$ can rule out most times

Can work in geodesic coordinates and assume

 $\gamma = \{ (s,0) : -1/2 \le s \le 1/2 \}.$ 

Then if  $\hat{f}(\xi) = 0$ ,  $|\xi_1|/|\xi| \ge \theta > 0$ , have  $\lambda^{1/4}$  improvement over what we need:

 $\left\|\cos(t\sqrt{-\Delta})f\right\|_{L^2(\gamma\times t\in[j,j+1])} \le C_{\theta}\|f\|_{L^2(M)}.$ 

Above a nice FIO (loc canonical graph when acting on such f). This and wave-front set analysis allows you, in above time-averaging integral, to cut away all times not near multiples of primitive period,  $\ell(\gamma)$ , of our  $\gamma \in \Pi_{periodic}$ , and more

**Hadamard:** If (M, g) has  $\leq 0$  curvature and  $x_0 \in \gamma \subset M$  then  $p = \exp_{x_0} : T_{x_0}M \simeq \mathbb{R}^2 \to M$  is a universal cover. Let  $\Gamma$  be the set of deck transformations (homeomorphisms  $\alpha$  s.t.  $p \circ \alpha = p$ ).

Hadamard: If (M, g) has  $\leq 0$  curvature and  $x_0 \in \gamma \subset M$  then  $p = \exp_{x_0} : T_{x_0}M \simeq \mathbb{R}^2 \to M$  is a universal cover. Let  $\Gamma$  be the set of deck transformations (homeomorphisms  $\alpha$  s.t.  $p \circ \alpha = p$ ).

If  $\tilde{g}$  is the pullback of g then solutions of wave equations, u(t, x), on (M, g) correspond exactly to periodic ones on universal cover (i.e.  $\tilde{u}(t, \alpha(\tilde{x})) = \tilde{u}(t, \tilde{x}), \alpha \in \Gamma$ ). Thus,

$$\left(\cos t\sqrt{-\Delta_g}\right)(x,y) = \sum_{\alpha \in \Gamma} \left(\cos t\sqrt{-\Delta_{\tilde{g}}}\right)(\tilde{x},\alpha(\tilde{y})), \text{ if } p(\tilde{x}) = x, \, p(\tilde{y}) = y.$$

Hadamard: If (M, g) has  $\leq 0$  curvature and  $x_0 \in \gamma \subset M$  then  $p = \exp_{x_0} : T_{x_0}M \simeq \mathbb{R}^2 \to M$  is a universal cover. Let  $\Gamma$  be the set of deck transformations (homeomorphisms  $\alpha$  s.t.  $p \circ \alpha = p$ ).

If  $\tilde{g}$  is the pullback of g then solutions of wave equations, u(t, x), on (M, g) correspond exactly to periodic ones on universal cover (i.e.  $\tilde{u}(t, \alpha(\tilde{x})) = \tilde{u}(t, \tilde{x}), \alpha \in \Gamma$ ). Thus,

$$\left(\cos t\sqrt{-\Delta_g}\right)(x,y) = \sum_{\alpha \in \Gamma} \left(\cos t\sqrt{-\Delta_{\tilde{g}}}\right)(\tilde{x},\alpha(\tilde{y})), \text{ if } p(\tilde{x}) = x, \, p(\tilde{y}) = y.$$

If |t| < T there are only  $O(\exp(cT))$  nonzero terms
Hadamard: If (M, g) has  $\leq 0$  curvature and  $x_0 \in \gamma \subset M$  then  $p = \exp_{x_0} : T_{x_0}M \simeq \mathbb{R}^2 \to M$  is a universal cover. Let  $\Gamma$  be the set of deck transformations (homeomorphisms  $\alpha$  s.t.  $p \circ \alpha = p$ ).

If  $\tilde{g}$  is the pullback of g then solutions of wave equations, u(t, x), on (M, g) correspond exactly to periodic ones on universal cover (i.e.  $\tilde{u}(t, \alpha(\tilde{x})) = \tilde{u}(t, \tilde{x}), \alpha \in \Gamma$ ). Thus,

$$\left(\cos t\sqrt{-\Delta_g}\right)(x,y) = \sum_{\alpha \in \Gamma} \left(\cos t\sqrt{-\Delta_{\tilde{g}}}\right)(\tilde{x},\alpha(\tilde{y})), \text{ if } p(\tilde{x}) = x, \, p(\tilde{y}) = y.$$

If |t| < T there are only  $O(\exp(cT))$  nonzero terms

**DISASTROUS** if we had to consider all of them (if curv < 0).

Hadamard: If (M, g) has  $\leq 0$  curvature and  $x_0 \in \gamma \subset M$  then  $p = \exp_{x_0} : T_{x_0}M \simeq \mathbb{R}^2 \to M$  is a universal cover. Let  $\Gamma$  be the set of deck transformations (homeomorphisms  $\alpha$  s.t.  $p \circ \alpha = p$ ).

If  $\tilde{g}$  is the pullback of g then solutions of wave equations, u(t, x), on (M, g) correspond exactly to periodic ones on universal cover (i.e.  $\tilde{u}(t, \alpha(\tilde{x})) = \tilde{u}(t, \tilde{x}), \alpha \in \Gamma$ ). Thus,

$$\left(\cos t\sqrt{-\Delta_g}\right)(x,y) = \sum_{\alpha \in \Gamma} \left(\cos t\sqrt{-\Delta_{\tilde{g}}}\right)(\tilde{x},\alpha(\tilde{y})), \text{ if } p(\tilde{x}) = x, \, p(\tilde{y}) = y.$$

If |t| < T there are only  $O(\exp(cT))$  nonzero terms

**DISASTROUS** if we had to consider all of them (if curv < 0).

**Miracle:** Just have to consider  $\alpha \in \Gamma$  in the stabilizer subgroup, Stab $(\tilde{\gamma}_0) \subset \Gamma$ , of the lift,  $\tilde{\gamma}_0$ , of  $\gamma_0$ .

Hadamard: If (M, g) has  $\leq 0$  curvature and  $x_0 \in \gamma \subset M$  then  $p = \exp_{x_0} : T_{x_0}M \simeq \mathbb{R}^2 \to M$  is a universal cover. Let  $\Gamma$  be the set of deck transformations (homeomorphisms  $\alpha$  s.t.  $p \circ \alpha = p$ ).

If  $\tilde{g}$  is the pullback of g then solutions of wave equations, u(t, x), on (M, g) correspond exactly to periodic ones on universal cover (i.e.  $\tilde{u}(t, \alpha(\tilde{x})) = \tilde{u}(t, \tilde{x}), \alpha \in \Gamma$ ). Thus,

$$\left(\cos t\sqrt{-\Delta_g}\right)(x,y) = \sum_{\alpha \in \Gamma} \left(\cos t\sqrt{-\Delta_{\tilde{g}}}\right)(\tilde{x},\alpha(\tilde{y})), \text{ if } p(\tilde{x}) = x, \, p(\tilde{y}) = y.$$

If |t| < T there are only  $O(\exp(cT))$  nonzero terms

**DISASTROUS** if we had to consider all of them (if curv < 0).

**Miracle:** Just have to consider  $\alpha \in \Gamma$  in the stabilizer subgroup, Stab $(\tilde{\gamma}_0) \subset \Gamma$ , of the lift,  $\tilde{\gamma}_0$ , of  $\gamma_0$ . I.e., just need to consider O(T) of above terms, as in geodesic polar coordinates,  $ds^2 = dr^2 + \rho(r, \theta)d\theta^2$ . Can "throw away" rest, by FIO facts from previous slide.

Choose fund domain  $D \subset \mathbb{R}^2$  for M. For  $x \in M$ ,  $\exists ! \tilde{x} \in D$  so that  $p(\tilde{x}) = x$ . Then are reduced to showing

$$\sum_{\substack{\alpha \in \mathsf{Stab}(\tilde{\gamma}_0) \\ d_{\tilde{g}}(\tilde{x}, \alpha(\tilde{y})) \leq T}} \left\| \frac{1}{T} \iint \hat{\chi}(\frac{t}{T}) e^{it\lambda} \cos t \sqrt{-\Delta_{\tilde{g}}}(\tilde{x}, \alpha(\tilde{y})) f(y) dt dV_g(y) \right\|_{L^2(x \in \gamma)}$$

 $\leq CT^{-\sigma}\lambda^{rac{1}{4}}\|f\|_{L^2(M)},\ \lambda$  large.

Choose fund domain  $D \subset \mathbb{R}^2$  for M. For  $x \in M$ ,  $\exists! \tilde{x} \in D$  so that  $p(\tilde{x}) = x$ . Then are reduced to showing

 $\sum_{\substack{\alpha \in \mathsf{Stab}(\hat{\gamma}_0) \\ d_{\tilde{g}}(\tilde{x}, \alpha(\tilde{y})) \leq T}} \left\| \frac{1}{T} \iint \hat{\chi}(\frac{t}{T}) e^{it\lambda} \cos t \sqrt{-\Delta_{\tilde{g}}}(\tilde{x}, \alpha(\tilde{y})) f(y) dt dV_g(y) \right\|_{L^2(x \in \gamma)}$ 

$$\leq CT^{-\sigma}\lambda^{\frac{1}{4}}\|f\|_{L^{2}(M)}, \ \lambda \text{ large.}$$

#### Hadamard Parametrix:

$$\begin{split} & \left(\cos(t\sqrt{-\Delta_{\tilde{g}}})\right)(\tilde{x},\alpha(\tilde{y})) \\ &= a_0(\tilde{x},\alpha(\tilde{y}))(2\pi)^{-2}\int_{\mathbb{R}^2}e^{iz\cdot\xi}\cos t|\xi|\,d\xi + Better, \text{ if } |z| = d_{\tilde{g}}(\tilde{x},\alpha(\tilde{y})). \end{split}$$

Choose fund domain  $D \subset \mathbb{R}^2$  for M. For  $x \in M$ ,  $\exists ! \tilde{x} \in D$  so that  $p(\tilde{x}) = x$ . Then are reduced to showing

 $\sum_{\substack{\alpha \in \mathsf{Stab}(\tilde{\gamma}_0) \\ d_{\tilde{g}}(\tilde{x}, \alpha(\tilde{y})) \leq T}} \Bigl\| \frac{1}{T} \iint \hat{\chi}(\frac{t}{T}) e^{it\lambda} \cos t \sqrt{-\Delta_{\tilde{g}}} (\tilde{x}, \alpha(\tilde{y})) f(y) dt dV_g(y) \Bigr\|_{L^2(x \in \gamma)}$ 

$$\leq CT^{-\sigma}\lambda^{\frac{1}{4}}\|f\|_{L^{2}(M)}, \ \lambda \text{ large}.$$

### **Hadamard Parametrix:**

 $(\cos(t\sqrt{-\Delta_{\tilde{g}}}))(\tilde{x},\alpha(\tilde{y}))$ =  $a_0(\tilde{x},\alpha(\tilde{y}))(2\pi)^{-2} \int_{\mathbb{R}^2} e^{iz\cdot\xi}\cos t|\xi|\,d\xi + Better, \text{ if } |z| = d_{\tilde{g}}(\tilde{x},\alpha(\tilde{y})).$ 

Using  $O(|z|^{-\frac{1}{2}})$  decay of Fourier integral, easy to see get above with  $\sigma = 1/2$  if principal Hadamard coefficient satisfies

 $a_0(\tilde{x}, \alpha(\tilde{y})) = O(1)$ 

# Last miracle: Vol comparison bounds

If you write  $dV_g$  in geodesic polar coordinates about  $\tilde{x}$ ,

$$dV_g(\tilde{z}) = \rho(r,\theta) dr d\theta, \ r = d_{\tilde{g}}(\tilde{x},\tilde{z}),$$

## Last miracle: Vol comparison bounds

If you write  $dV_g$  in geodesic polar coordinates about  $\tilde{x}$ ,

$$dV_g(\tilde{z}) = \rho(r,\theta) dr d\theta, \ r = d_{\tilde{g}}(\tilde{x},\tilde{z}),$$

then the principal Hadamard coefficient is

 $a_0(\tilde{x}, \tilde{z}) = |\rho(r, \theta)|^{-1/2}.$ 

# Last miracle: Vol comparison bounds

If you write  $dV_g$  in geodesic polar coordinates about  $\tilde{x}$ ,

$$dV_g(\tilde{z}) = \rho(r,\theta) dr d\theta, \ r = d_{\tilde{g}}(\tilde{x},\tilde{z}),$$

then the principal Hadamard coefficient is

 $a_0(\tilde{x}, \tilde{z}) = |\rho(r, \theta)|^{-1/2}.$ 

By Günther comparison theorem have final miracle:

 $\rho(r,\theta) \ge r, \text{ if curv} \le 0$ 

# Last miracle: Vol comparison bounds

If you write  $dV_g$  in geodesic polar coordinates about  $\tilde{x}$ ,

$$dV_g(\tilde{z}) = \rho(r,\theta) dr d\theta, \ r = d_{\tilde{g}}(\tilde{x},\tilde{z}),$$

then the principal Hadamard coefficient is

$$a_0(\tilde{x}, \tilde{z}) = |\rho(r, \theta)|^{-1/2}.$$

By Günther comparison theorem have final miracle:

 $\rho(r,\theta) \ge r, \text{ if curv} \le 0$ 

(and, *even better*,  $\rho \geq \frac{1}{\kappa} \sinh(\kappa r)$ , if curvature  $\leq -\kappa^2$ , with  $\kappa > 0$ .)

### Thank You!



Chris Sogge Dispersive properties of eigenfunctions 19/19